|
Author: Seppo Nurmi, Järfälla, Sweden. | |||
Ultraspherical Harmonics
1. Ultraspherical CoordinatesLet us consider spherical look-a-like orthogonal coordinates in an arbitrary number n of dimensions. Transformation into Cartesian coordinates can be expressed generally as follows:
| |||
| (1.1) | |||
|
where
| |||
| (1.2) | |||
|
Now, denoting formally
| |||
| (1.3) | |||
|
Define a set of generalised coordinates : (we give r the highest index for convenience)
| |||
| (1.4) | ||
|
We get the scalar-coefficients from the formula:
| |||
| (1.5) | |||
|
Observe that for all of the coordinates here is true:
| (1.6) | ||
|
Then for the n:th scalar coefficient
| |||
| (1.7) | |||
|
Further we get, if we observe that
| |||
| (1.8) | |||
|
Elimination, using
| |||
| (1.9) | |||
|
yields
| |||
| (1.10) | |||
|
So we conclude: | |||
| (1.11) | ||
|
In a compact recursive notation we have for the scalar coefficients
| |||
| (1.12) | |||
|
starting from
| |||
| (1.13) | |||
|
Now denote
| |||
| (1.14) | |||
|
| |||
| (1.15) | |||
|
| |||
| (1.16) | |||
|
Then we get
| |||
| (1.17) | |||
|
and
| |||
| (1.18) | |||
|
Results, to be used in next chapter:
| |||
| (1.19) | |||
|
| |||
| (1.20) | |||
|
| |||
| (1.21) | |||
|
|
|||