|
Copyright © Seppo Nurmi, 1998, All Rights Reserved.
Welcome to Seppo Nurmi's Math PagesComplex and Hypercomplex Numbers
| |||||||||||||||||||||||||||||||||
| (1.1) | |||||||||||||||||||||||||||||||||
|
Determinants are equal to +1 or -1 , which determines what is called unitarity. | |||||||||||||||||||||||||||||||||
| (1.2) | |||||||||||||||||||||||||||||||||
|
Matrix multiplication gives the multiplication table, which, as we see, is very similar (actually, as identical as it can be without the imaginary unit explicitly expressible) witch that of Pauli spin matrices. Multiplication of two of the members of the group gives a third member of the group, or its negative. There is a negative member for every member that also belongs to the group, according to the group theory. (There is also a zero-member in the group, in our case a zero matrix.) Note that the multiplication is not commutative, changing the order in multiplication changes the sign of the result.
| |||||||||||||||||||||||||||||||||
| (1.3) | |||||||||||||||||||||||||||||||||
|
Note: Hypercomplex base vectors in the traditional form have somewhat different table:
| |||||||||||||||||||||||||||||||||
| (1.4) | ||||||||||||||||||||||||||||||||
|
and the nearly related Hamilton's quaternions have the multiplication table:
| |||||||||||||||||||||||||||||||||
| (1.5) | ||||||||||||||||||||||||||||||||
|
Let us introduce now a conjugate product, a product of a matrix and a transposed one:
| |||||||||||||||||||||||||||||||||
| (1.6) | |||||||||||||||||||||||||||||||||
|
All of the matrices In has their conjugate product with themselves equal to the unit matrix I0:
| |||||||||||||||||||||||||||||||||
| (1.7) | |||||||||||||||||||||||||||||||||
|
2. Complex Numbers in Real valued Matrix RepresentationWe can treat the matrices as a kind of "numbers", mathematically often called "pseudoscalars". They can formally be given the role to represent numbers. Now, because multiplication with I0 does not change any matrix, I0 can be given the role to represent the number 1. (The zero matrix represents the number zero.) Note that all of the matrices, I0 , I1 , and I3 satisfy the equation: | |||||||||||||||||||||||||||||||||
| (2.1) | |||||||||||||||||||||||||||||||||
|
But I2 alone represent a solution to the equation: | |||||||||||||||||||||||||||||||||
| (2.2) | |||||||||||||||||||||||||||||||||
|
On the other hand, this solution to (2.2) is known to be
| |||||||||||||||||||||||||||||||||
| (2.3) | ||||||||||||||||||||||||||||||||
|
All of the elements of this matrix are real valued. It is the matrix itself, not its components, that is taken to be the complex number. So the complex number z is represented by a real element "pseudoscalar" matrix. The absolute value of z is the the square root of the determinant of the matrix: | |||||||||||||||||||||||||||||||||
| (2.4) | ||||||||||||||||||||||||||||||||
|
If z is a solution to the basic algebraic equations above it is
unimodular, its determinant is We get the complex conjugate of z by changing the sign of the imaginary part, which now means changing the sign of the non-diagonal elements, which represent the imaginary part. This on the other hand is identical to the transpose of the matrix (switching columns to rows and vice versa). | |||||||||||||||||||||||||||||||||
| (2.5) | ||||||||||||||||||||||||||||||||
|
which corresponds to the complex conjugate of (a + bi) which is (a - bi).
| |||||||||||||||||||||||||||||||||
| (2.6) | ||||||||||||||||||||||||||||||||
|
Note that the complex matrix representation automatically Hermitian (self adjoint). The Hermitian adjoint is defined as the transpose of the complex conjugate of a matrix, which in our case this is the same as transposing twice, and thus gives the original matrix. The condition for a matrix to be Hermitian is that its adjoint is equal to the matrix self. This is then trivially true for the pseudoscalar complex representation.. We get the absolute value of a complex number z by multiplicating of the complex matrix with its transpose (conjugate product). | |||||||||||||||||||||||||||||||||
| (2.7) | ||||||||||||||||||||||||||||||||
|
The inverse of z becomes | |||||||||||||||||||||||||||||||||
| (2.8) | ||||||||||||||||||||||||||||||||
|
Separation of the Real and the Imaginary part: | |||||||||||||||||||||||||||||||||
| (2.9) | ||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||
| (2.10) | ||||||||||||||||||||||||||||||||
|
Conversion from pseudoscalars to real numbers: | |||||||||||||||||||||||||||||||||
| (2.11) | |||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||
| (2.12) | |||||||||||||||||||||||||||||||||
|
The argument q of a complex pseudoscalar number z is given by the identities: | |||||||||||||||||||||||||||||||||
| (2.13) | ||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||
| (2.14) | ||||||||||||||||||||||||||||||||
|
By addition and subtraction, and using results (2.11) and (2.12) above about separating of the real and imaginary part: | |||||||||||||||||||||||||||||||||
| (2.15) | |||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||
| (2.16) | |||||||||||||||||||||||||||||||||
|
Then by division we get an expression for the argument angle: | |||||||||||||||||||||||||||||||||
| (2.17) | |||||||||||||||||||||||||||||||||
|
3. Hypercomplex NumbersThe complex matrix representation presented in chaper 2. does not include all of the 2×2 base matrices. More generally let us define a hypercomplex number: | |||||||||||||||||||||||||||||||||
| (3.1) | |||||||||||||||||||||||||||||||||
|
We now have here a complete linear system (manifold) of pseudonumbers, in fact constituting of a vector (pseudovector). In matrix form any of them can be written as a linear combination of a set of basis pseudonumber matrices: | |||||||||||||||||||||||||||||||||
| (3.2) | ||||||||||||||||||||||||||||||||
|
The determinant of this matrix becomes: | |||||||||||||||||||||||||||||||||
| (3.3) | |||||||||||||||||||||||||||||||||
|
Note that the determinant may in certain cases be zero even for nonzero matrices. That is when the matrix is singular, rising a need of special conditions that the matrix elements must fulfil to avoid singular matrices. This is commonplace matrix algebra and we don't need now to go deeper in that problem. Assuming the matrix is non-singular, the inverse of Z becomes: | |||||||||||||||||||||||||||||||||
| (3.4) | ||||||||||||||||||||||||||||||||
|
Comparison with the original matrix reveals that the inverse can be done directly in either of the two ways: 1.a changing the sign before the basis matrices except the first one that is the unit matrix; or , which is the same as 1.b swapping the diagonal elements and swapping and changing sign of the off-diagonal element; and then finally, 2. multiplying the resulting matrix with the inverse value of the determinant of the original matrix.
Complex conjugation is related to the inverse. For the commonplace complex numbers a + b i the complex conjugation a - b i can be written as | |||||||||||||||||||||||||||||||||
| (3.5) | ||||||||||||||||||||||||||||||||
|
One good reason for defining the concept complex conjugation is that it is needed to produce the norm of a complex number: | |||||||||||||||||||||||||||||||||
| (3.6) | |||||||||||||||||||||||||||||||||
|
In a similar manner we define the norm of a hypercomplex number: | |||||||||||||||||||||||||||||||||
| (3.7) | |||||||||||||||||||||||||||||||||
|
where the hypercomplex conjugation is defined as | |||||||||||||||||||||||||||||||||
| (3.8) | ||||||||||||||||||||||||||||||||
|
Then substituting the inversion from the formula (3.4) , the hypercomplex conjugation becomes | |||||||||||||||||||||||||||||||||
| (3.9) | ||||||||||||||||||||||||||||||||
|
For forming the hypercomplex conjugation the same rules apply as above for the inverse, except for the multiplying factor, let us call it a nominal function, which is now | |||||||||||||||||||||||||||||||||
| (3.10) | ||||||||||||||||||||||||||||||||
|
The matrix transpose of a hypercomplex number become | |||||||||||||||||||||||||||||||||
| (3.11) | ||||||||||||||||||||||||||||||||
|
Transposing of a matrix does not affect the determinant, neither the norm, so | |||||||||||||||||||||||||||||||||
| (3.12) | |||||||||||||||||||||||||||||||||
|
Performing both transpose and conjugation we now call the adjoint of the hypercomplex number. Here is where the hypercomplex notion differs from the matrix notion.The matrix is a representation of the former, but the commonplace matrix adjoint does not apply here. We can not use the commonplace matrix conjugation (which would be equal to the original matrix because its elements are real). In stead we have the hypercomplex conjugation defined above. The hypercomplex numbers are a kind of pseudonumbers that have their corresponding inverse, conjugation, and adjoint, that also are hypercomplex numbers. Transpose is a matrix property, not really a hypercomplex property. The norm is a hypercomplex property, whereas determinant is a matrix property. The nominal function gives the conversion rule between these two. Using the transpose above and the conjugation rule we get for the hypercomplex adjoint: | |||||||||||||||||||||||||||||||||
| (3.13) | |||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||
| (3.14) | ||||||||||||||||||||||||||||||||
|
The other way round, starting from the conjugate and transposing it we get | |||||||||||||||||||||||||||||||||
| (3.15) | ||||||||||||||||||||||||||||||||
|
So we get the same matrix in either way, and denote this result the hypercomplex adjoint: | |||||||||||||||||||||||||||||||||
| (3.16) | |||||||||||||||||||||||||||||||||
|
When the adjoint is identical to the inverse of a hypercomplex number, then the hypercomplex number is said to be unitary . | |||||||||||||||||||||||||||||||||
| (3.17) | |||||||||||||||||||||||||||||||||
|
Succestions for "normalized" forms in expressing the hypercomplex matrix:
Assuming that the matrix representation of Z is non-singular, and denoting: ![]() | |||||||||||||||||||||||||||||||||
| (3.18) | |||||||||||||||||||||||||||||||||
|
![]() | |||||||||||||||||||||||||||||||||
| (3.19) | |||||||||||||||||||||||||||||||||
|
![]() | |||||||||||||||||||||||||||||||||
| (3.20) | |||||||||||||||||||||||||||||||||
|
| |||||||||||||||||||||||||||||||||